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CALCULATION OF CENTRALLY LOADED THIN-WALLED COLUMNS
ABOVE THE BUCKLING LIMIT*

By F. Reinitzhuber
INTRODUCTION

When thin-walled columng formed from flanged sheet, such
as used in airplane construction, are subjected to axial load,
their behavior at failure varies according te the slenderness
ratio,

On long columns the axipg deflects laterally whille the
cross section form is maintained; buckling results. The re—
spective breaking load in the elastic range is computed by
Euler's formula and for the plastic range by the Engesser—
Karman formula. Its magnitude iz essentially dependent upon
the length, On intermediate length columns, especially where
open sections are concerned, the cross section is distorted
while the cross section form is preserved; twisting failure
rasults: The buckling load in twisting is czlculated accord—
ing to Wagner and Kappus (reference 1). On short columns the
straight walls of low—bending resistance that form the column
are deflected at the same time that the cross section fornm
changes — buckling occurs without immediate failure. Then the
buckling load of the total sectlion computable from the buckling
loads of the section walls 1g not the ultimate load; quite
often, especially on thin—-walled sections, it lies considerabdly
higher and is secured by tests. Both loads, the buckling and
the ultimate load are only in a small measure dependent upon
length.

The present report 1s an attempt to theoretically inves—
tigate the bshavior of such short, thin-walled columns above
the buckling load with the conventional calculating methods.

*1Baitrag zur Berechnung gedrlickter, dinnwandiger Profile
oberhaldb der Beulgrenze," ILuftfahrtforschung, vol. 19, no. 7,
July 20, 1942, pp. 240-~-247,
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The cross section of the column selected was a Square, which

._.by-reason of its symmetrical properties lends itself best to

mathenatical treatment. The results are thgn checked by tests.
THEQORY

A closed section (hollow cylinder) of elastic material
(modulus of elasticity X, Poisson's ratio wv) the cross
section of which is a square with sides of length 1 and
sheet thickness s, is centrally loaded with a force P in
longitudinal direction (direction of cylinder axis). On
placing through the median plane of one of the four identical
sides a system of coordinates x, y, z (fig. 1), the defor—
mations u, v, w are in direction of the coordinates, and
the stresses Oy, Oy and T &along the median plens.

If the mean compressive stress p = P/4sbd 1is lower than
the critical buckling stress p* the stresses are Oyx = —p,

0y = 0, T=0 and the deformations u = -~ %-x, v =
+ v %— Yo W = 4+ D % -g— . Between the shortening ¢ and the

compressive stress p proportionality exists then according
to the equation p = E€¢ as far as the buckling limit; at
the latter p* = E€*, where ¢* |is the eritical compression,

If the mean compressive stress p exceeds the critical
buckling stress p*, the side walls wrinkle lengthwise, the
cross section assumes the form shown in figure 1, on whieh,
since the right angles remain at the corners, a bulge in the
ote side area corresponds to a dent in the next one and the
corners remain square. If the short column is of sufficlent
length, the buckles in longitudinal direction have in the
area not affected by the disturbed end surfaces, the constant
length 1; for great length, 1 = b, The behavior of the
profile is therefore periodic with the length 1. The prob-
lem thug reduces to an analysis of one of the four identigal
rectangular sides between two successive Jjunction lines as a

plate (dimensions b X 1).

According to the theory of the thin elastic plate with
great deflections (reference 2) the stresses Oxr Ty» and T
in the plane of the plate follow the equations
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aox + -a-l = 0 ) .
. x oy - (10)
a
.@.I_ o+ -a-& = 0
ox - dy
which are satisfied by the stress function formula
Ox = Byyy 0y = gy T = = éxy. NERY

the stress function ¢ and the sag Ww Dbeing related through
the fundamental equations

640= E( £y - mww> (2)
and
L Adw—Qupw, -0 _w  +20_ _w = 0 (3)
12(1~v%®) Yy Txx - Txx Tyy xy 'xy * :

The deformations wu, v in the plane of the plate follow
from

Ev, =0__ —~ vd -

E
y XX Yy )

wy2 (5)
(The subscripts wu, v, w, and @ denote the partial de~
rivativas conformable to the respective variables. )

The combined action between the four side walls at the

corners y = * b/2 gstipulates the compliance with the bound-
ary conditions .

"y <x.¥%>=-—wy ("“"?'2‘) | (6a)
T <x’ ) i v(* * “%'> - (s®)
i <x'*%>;o (6c)
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,,,<x, i%L) =0 . (sa)
+b/2
~b/2 |

Since no exact integration of equations (2) and (3) has boen
published so far, recourse is had to an approximate method by

Maguerre (reference 2) and the Ritz formula

w=n + fcos%cos%y— (7)

igs chogsen for the deflection, with f as the free value
which closely approaches the form of buckling occurring short—

ly after exceeding the critical load and satisfies (6a).
Bquation (7) entered at the right—hand side of equation (2)

gives

.-
o = - Erlf 2mX 4 o 20Y )
A A Y FE cos 1 cos b

of which the particular integral

. - 2 | 2
o(®) - _ g —g;[(-%-) cosg%’ﬁ- (——?—-) cos 3—%—3-’-] (8a)

can be posted. For compliance with (6b) to (64) solutions
periodic in x direction and symmetrical with respect to the

x and ¥y axis

] |
o™ = - (BZ° 4 4 cosn 2IT cos 22

+ B -2-’{-‘—’ Sinh 2’{1 cos 2‘{") ~ (81)

.

are added to the homogeneous equation A8 P =0 related to
~(2), after which the complete solution for & reads
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o = olp) 4+ <I>(h) - (8)

”;\}rqurafl;rionﬂ (B)for ' ® entered in (1v), (4), and (5) gives

ox = B <i-> cos "

cos 2IE [(A+ BB)Coshm-l-Bu—z-xSinh-——x] ...{9a)

-.;iz:

1

oy=LE"a<~—>+$ﬂ£ '.A.csh--i’+-—1351h§1*iz ]cosﬂ{-5 (9b)

. 2ny 2ny 211;{] 2nx :
e () e 5
- <><x~—~sinm~lsinmcoszm>
3 R
2 T
- F (41 + v)+ 28) cosn T
+ (1 + ») B-gf'izsmh 2!.{2];1;.2_’;25..1,, (oa)
A EAN 2
= = LA S eny
Ev v E g l) 3 sin Y
2 f)"( b. . b 2nx 2oy \
-3 T (2. - gy 2Ny B LALES =say
3 (; Yopy BRTRT gy 00 Ty sl Ty
+-2-§[(A(1 +v) =B (1 -v) Sinh?-ﬁlz-
+ (1 + ») B E%z Cosh E%X ]COS 3%5 + vpy (9e)

The boundary condition (6a) is satisfied by (7). to satisfy‘
H,<6b)’ which with (7) becomes ,

’ | . <x. -—-) (8p1)
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_.and also (6c¢c), (64), and (6e); that is, of altogether four

boundary conditions, o6nly three integration constants - A,.B,
and p are avallable. A suitable choice 1is therefore neces—
sary to ensure satisfactory approximate solutions,

Of the four possibilities

(6b'), (6c), (BA) vve.eevewnoes (20a)

(6b'), (6c), (6e) vevurrn.n.. . (100b)
(6b'), (64), (6e) vvvevvnennn. (10c)

(6c), (6a), (6e) ............ (104)

available for predicting A, B, and p, (10a) and (10D)
cancel out, because for these the longitudinal Dborders of the
plate stipulate simultaneously the conditions Oy = 0 in

(6c) and v = constant in (6b'), which can be reciprocally
excluded and therefore do not eliminate the boundary integral
in equation (13). With (10c¢) and (104) it is found from (6e)
by integration of (9a) for ox over the plate width by ob—

servation of (6d4), that the constant of integration p is
directly equal to the average value of the compressive stress

P = (11a)

4bg
The other two unknown constants A and B are thenobtained
conformably to (10c¢) and (104) from (6b), (64) or (6c) and
(6d)., TFrom (6b) and (64) the result is A = B = 0:; this case,
already investigated by Marguerre on the effective width of
the stiffened plate in compression {(reference 2), is not as
sultable an approximate solution as those obtainable from

(6c) and (64) and which were therefore used for computing A
a,nd. B. ) :

Equations (9b) and (9c¢) afford for y = £ b/2 1in accord
with (6¢) and (6d4) the equations

2 2 2
al2m) a2 §i> 2 2 n? (E;) = 0
A (1 ) . Cosh 1. .1‘..+ B ( T/ nlS‘inh "3 +E8 A3 =0

LS
1 i 1




NACA TM No., 1077 o 7

hence

" E'f'; z 2 S i'nh;-bf# ;'-’—;’-‘ Cosh m Pz'
A== (" (11b)
16 \b Sinhzn-'-?-+2n-%-
ge2 /102 Sinh n & -
B e+ 16 (") ‘ : 5 (11¢)
6 \b Sinhzn—}z’»+2n7

The constants of integration A, B, and p given by (11)
satisfy (10d4) but not (6b') which specifies that the deforma—
tion v on the longitudinal edge of the plate shall be con-—
stant and egqual to n, and for which (%9e) gives

Y, [_m2(e) 2)2
v(}g *+ 2>‘_ ( 5% + v B =
, "’%%{[A(l""’)"B(l””)]Sinh"%

,+.(J.+'u).'B'n-vl-;'—(‘lc:)s’,h'rrl;-;}cos-‘25'%--JS
On posting herein the values (11b) and (llc) for A and B
it is found that in fact the second summand variable with x
does not disappear, hence that v(x, £b/2) does not become
constant, In order to obtain a value for n independent._of
k with the least possible deviations from (6b!)

(_m2 (2} E.)Jz
n ( e(b>+"m 2

is put equal to the average value of v at the longitudinal
prlate edge,

The equation (3) for w can no longer be satisfied, in
consequence of Ritz's formula and is therefore replaced by
the demand to so choose the free value f that the form
change energy stored in the plate . . ... .. .. ... . ... .
+1/2+ /2
s = ‘ -2 52 2
i- [ f {& o —2(14+9)(05 Oy = 03 )]

-1/2 —1v/2 '
E g
24 (1 -

5 [aw)®~2 (1 = v)(uxxwyy - wiy)]}dx iy (12)
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becomes a minimum, The unknown £ is determined from

: _g.?g.:o Differentiation of (12) with respect to f before
1ntegrat1ng (Galerkin method) while bearing in mind (la) in—
stead of (3) gives -

+1/2 +1pf2
°oF _ _. [ B dw
3F © sf f (‘I’yy vex ¥ Pxx Wyy = 20 gy Wy 12(1s S5y 00w ) 57 Ax 4y
-1f2 -p/2
+b/2 \
! du dw dv dw
+ s ! [ny .5.5 + . wx —-—E/ - ¢Xy (......:.f. + wy .S_f dy
-b/2 x=*x1/2
+z/2r_
dv 5w> d d }
+ o — hid cu ow
sf !. xx \3f = "V 3% y(bf+ Yx af> dx
-tz y=%1v/2
+b/2
Es®
 —_— -
12(1 - va){f (v wxyy = Bvxyy = wxxx) 5 |8¥
-b/2 -
v 1)z x= +1/2
+f (W vxxy = 2vxzy - vyyy) §3 Idx
-2 y= % vf2

+b/2 ~ v T
+f| (Wxx+ YW y)—-é}l‘ dy + ' (Wyy + "Wxx) %Efx dx

-b/2 x=%1/2 -1/2 y=*b/2
+2 (1= v) gy L !} o LT (s
. x =+ 1/2 V
¥ = :E'b/z
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In equation {13) the boundary terms and integrals disappear
with formula (7) and the ‘boundary conditions (6¢) and (64).

With the solution of f from (13) the stress and strain
condition of the section can be calculated from equations(7)
and (9).

The subsequent investigation is carried out for the case
of square bulges (b = 1), as they occur in the undisturbed
zone on the sufficiently long cylinder., ZEntering the ex—
pression {(8) for & and (11) for A and B, equation (11)

yields
2 2 B
: (2) =22 (;/‘2 ) (14)

where p 1is replaced by the expression

ne f.a
2= 3(e-F (3)) (1%)
, ;> =4 ¢ -% (ef. equation (94))

following from u (i
and

k= ——2osh 2n—=1 _ 4 20985

7{2 7 + Sinh 2m)

Posting f = 0 4in (1l4) gives the critical value for the
shortening €: .

hence (14) gives » -

—-—

nZ .;) =k (¢ —¢*) (} =-5l;= 0.5917> (16)

-The .connection between mean stress‘"i'”énd”méah ¢ follows
from (15) with : '

P = p* = Epeq (€ ~ €*) (17)
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where

Brea = (1 = k) E = -2-—:1";- E = 0,4083 E

The stress—strain equation (17) is reproduced in figure 2.
The apparent stiffness above the buckling limit is thus only
about 0.4 times as great as below the critical buckling load.

N

Entering (16) and (17) in (7) and (9) gives

o9x _ _» , 1 (P 2ny
- p*F O 1-k (p. >{°°s l

2 2 2 2ny |
- cos -lz‘l‘- [(cn + 2B)Cosh T;Y + B ’{V Sinh—-lz—z]}

I

d
*

Tk
il

T"“ (.12. - ) cos 20E
- K

{1 + @ Cosh 2’;-" + B 2’{" Sinh 31;.1}

Joo 2 (B 2nx
P* 1 ~ K(p* > =
{(or. + B) Sinh EEZ + 5—2-1;-}-’- Cosh E—;-T-y-}

(a. = ~ 0.35008, B = +0.08429, T:-L‘-"E = 1.44896>

The numefical evaluation of these equations for simple eiceed—
ing of the buckling load (p/p* = 2) <s shown in figure 3,

The stress distribution gives only an approximate picture
of the actual condition, because the deformation of v at the
section edge is not constant and independent of x as (6b')
stipulates. In spite of that the stress digtridution is quite

- plain:. the wavelike  deflectiony dn the side walls after the

ecritical buckling load is exceeded tend to pull the corners
into the area of maximum deflections. This results in tensile
stresses in ¥y direction in the middle of the buckles which
balance the compressive stresses occurring in the reversal
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point of the waves. This balance ¢an be established only
~ with the aid of shearing stresses, The compressive stresses
in x direction are unevenly distributed after the critical
‘buckling load is exceeded, the compressive stresses move
toward the corners. Depending upon the position of the cross
section the shearing stresses produce a different type of
stress distribution over-the plate width so that the shift of
the compressive stress on the plate edges is greater in the
cross section with maximum deflection than in the cross sec—
tion at the reversal point of the waves.

The reason that the investigation carried out in the
foregoing is-only approximately valid lies in the form of
buckle established with formula (7) for which the corners
were assumed to be square. With increasing exceeding of the
critical buckling load the corners of the section cease to
remain square, but pull into the cross sections in which the
side walls are subjected to the greatest deformations. An
extension of formula (7) by addition of a second free value
of the type

w=mn+ f, cos 3; cos %g + £, cos g%E cos 2%2

and further terms of this series should certainly produce
better results, If it is desired to use only one free value
and to achieve an improvement, formula (7) might be retained
and other solutions of the homogeneous equation AL = O

with new constants of integration added in (8b) and these

then determined by point—by-point compliance with the boundary
conditions. However, the paper work involved 1s so great that
its application was foregone.

EXPERIMENT

The purpose of the tests was to check the aforementioned
theoretical results by actual experiments, with special reof-—
erence to formula (7) and the stress—strain formula (17).

The test specimen was = square cylinder (fig. 4) of
medium hard sheet brass with the rivet seam running along the
center of a side, The characteristics of the brags sheet
(airplane material identification 2160.7) were:
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Thickness of sheet s = 0,61 to 0.62 mm, average: 0.615 mm

Modulus of elasticity E = lO 000 to 11 000 kg/mm2 '~ average:

10,500 kg/mm?

Yield point Og.2 = 24.4 kg/mm?
Tensile strength oy = 35.2 to 38.6 kg/mm2
Blongation '> 8§ = 50 percent

The wrinkles were neasured on two side walls by means
of a dial gage and a machined angle section, with arm set
parallel to two sides of the cylinder as shown in figure 4.
The gides parallel to the arms were explored by shifting the
dial gage., The deformations normal to the direction of com—
pression were measured in the center of the two side walls
over the entire length and at two cross sections (test sta-—
tion 18 and 25). The length change of the diagonals under
increasing load was recorded by vernier calipers, the compres—
glon of the test specimen by dial gage. The first reading
was made at 30-kilogram load; the other load stages at which
measurements were made, were 200, 500, 700, 1000, and 1200
kilograns,. :

The results of the side wall measurenents are shown in
figure 5, According to figures 5a and 5b, the waves formed in
longitudinal direction are approximately alike so far as the
unifornity was not disturbed by pre—buckling and edge effects.
An increase in load was acconpanied by a slight change in the
wave length. As one side area bulged out the area next to it
bulged in and vice versa,

" The length change of the diagonals is represen#ed in fig—
ure 6. The absolute size of these deformations is small con—
rared to the side wall bulging. Serviceadble test values start

.at 1800-kilogram loading, shortly before the breaking load is ‘
"reached. The points at which the waves in the side areas have

their extreme values disclosed a reduction in length of the

,,diagonals, the Jjunction lines of the waves & sllght incroave

in corner distance.

The result of the compression measurement on the test

~specimen under increasing load is given in table 1,
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The specimen fails at P = 1330 kilograms through defor-—
nation of the corners at test stations 33 and 34, where the
waves of the gide aréas have their Junetion lines. 'The failure
(fig., 7) zappears to be instability failure. ‘

On the basis of the side wall measurements formula (7)
can be regarded as depicting the deformation area so long as
the critical load is not too greatly exceeded; if further ex—
ceeded the corners will not remain square, so that formuls
(7) yields inferior approximate sclutions, as already indicmted

With a view to comparing the experimental data for the com—
pression with the theoretically obtained stress—strain egua—~
tion the values of table 1 were plotted in figure 2, where

. = _113 1 o.oew) - 0.0002
€ 3 1< 0.3% ( 8.0 y 13

#

p* = 0.000213 X 1050,000 = 224 kg/em?

Good ngreement obtains up to a simple exceeding of the critical
buckling load (p/p* = 2). Failure occurred at 2.3 times ex—
ceeding of the critical buckling load (p/p* = 3.3). In the
elastic range, before reachlng the theoretical critical buck—
ling load, the test points do %ot lie on the theoretical
straight line, which is probably attributable to the pre—
buckling inevitable on thin sheet. On the basis of the good
agreemnent of the theoretical stress—strain curve above the
critical buckling load the calculation of the constants of
integration A and B from (104) appears therefore justi-—
fied also, The use of (10c¢) as basis of the study would have
resulted in a decrease of the apparent stiffness above the
buckling limit by 0.5 times of the value valid in the elastic
range, a result odbviously less in agreement with the test data
of figure 2 than that semned from (104) with Epegq = 0.408 B
(equation 17)

A check test of the stress—strain curve was run on a
specinen of duralumin with the same cross section as that of
figure 4 (aircraft material 3116.5), (length: ! = 800 n/m),

Its general. characteristics were as follows:

Sheet thickness s = 0.61 to 0.67 mm,. average = 0,64 nm

Modulus of elasticity E = 6540 to 7320 kg/mm2, average
' 6830 kg/mn?
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29.1 kg/nn?

Tield 1limit O,p =
Tensile strength oy = 41.6 to 42.2 kg/mn?
Blongation . . § = 20 percent

The compression with increaﬁing load was measuréd;'tho
results are given in table 2, On putting the test values of
table 2 in ratio to the critical values

2

2 . .

PP QU — (9.-.9.@&) = 0,000232
8 1~ 0,3 8.0 -

p* = 0,000282 X 683000 = 158 kg/cm?

followed Dby plotting in figure 2 it ig found that the theo—
retical stress—strain curve is here also in good agreement
with the test points up to a simple exceeding of the critical
buckling load. Failure occurred at P = 1350 kilograns,
which corregponds to a 3.1 times exceeding of the critical
buckling load.

Sunming up it nay be stated that the tests fulfilled
their purpose, nanely, to check the formula (7) and“the stress—
strain equation (17). As = consequence the stress—strain
equation (17) secured theoretically with fornula (7) can be
regarded as practical up to a sinmple exceeding of the critical
buckling load.

CONCLUDING NOTE

On the basis of the present report it is possidle to
obtain a picture of the stress distribution and the strain
condition in a thin—walled, centrally loaded column of square
cross section above the critical buckling load, as well as '
an insight into the relationship existing between stress and
strain. Above the eritical buckling load the stress—strain
curve is linear according to fornmula (7) in first approxina—
tlon for the square section just as for the stiffened plate
in conpressioh, except that the range in which this equation
is applicable, is much greater compared to the breaking load
than on the compressed plate, While the test specinmens de-
scribed previously failed at 2.3 and 3.1 times exceeding of
the critical buckling load, the excess on the stiffened plate
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in compression may rise to several hundred times above the

“eritical buckling loaed, before the plate fails... The knowledge

of the stress—strain egquation is important when these sections
are used as stiffeners on coupressed plates, The decrease in
section stiffness above the critical buckling load with the
effective width must then be allowed for,

The theoretical prediction of the breaking value of thin—
walled flanged sections in compression 1s beset with great
difficulties since, apart from the obstacles indicated in the
present report, difficulties arise even in the elastic range,
the stroess peaks in the corners exceed the elasticity limit
before the breaking value is reasched and the premises of the
theory then do no longer hold. If, on the other hand, the
obtainment of the elastic limit by the stress peaks is re—
garded as a measure for the load capacity of the sections, the
methods &pplied here make it possible to obtain approximate
values for the allowable loads by theoretical means.

Translation by J. Vanlier,
National Advisory Committee
for Aeronauntics.

REFERENCES

1. Wagner, Herbert: Torsion and Buckling of Open Sections.
NACA TM No, 807, 1936,

Kappus, Robert: Twisting Failure of Centrally Loaded
Open—Section Columns in the Elastic Range. NACA TH
No. 851, 1938,

2. Marguerre, Karl: The Apparent Width of the FPlate in
Compression., NACA TM Xo. 833, 1937,

Kromm, A. and Marguerre, Karl: Behavior of a Plate Strip
under Shear and Compressive Stresses beyond the Buckling
_Limit, ©NACA TM No. 870, 1938,



NACA TM No. 1077

P £ a1 ¢
(kg) (kg/cm2) (mm)
0 0 0 0
200 102 0,05 .58 x 10~°*
300 152 . 09 1,05
400 203 .14 1.63
500 254 .22 2.56
600 305 .34 3.95
700 355 .44 5.11
800 406 .55 6.39
900 457 67 7.79
1000 508 .80 9.30
1100 558 .92 10.69
1200 609 1,16 13.48
1300 660 1.47 17.08
2
P P = 5 Al £
(kg) (kg/cm?®) (mm)
0 0 0 0
100 49 , 053 .66
- 200 97 .108 1.35 ¢
300 146 .175 2.19
400 195 .298 3,73
500 244 .440 5,50
600 293 .590 7.38
7007 Ts41 .780 9,75
800 390 968 12,10
900 439 1.195 14,95
- 488 1.433 17.90

1000
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Figure 6.- Length changes in the diagonals (test stations III
and IV) of the brass test specimen (aircraft

material 2160.7).

Figures 8a and 8b.— Specimen of duralumin (aircraft material
3116.5) under compressive load of 1200 kg.
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